k-coverable coronoid systems ${ }^{\star}$

Rong-si Chen
College of Finance and Economics, Fuzhou University, Fuzhou, 350002 Fujian, PR China
and
Xiao-feng Guo
Department of Mathematics, Xinjiang University, Urumchi, 830046 Xinjiang, $P R$ China

Abstract

A coronoid system G is k-coverable if for every k (or fewer) pairwise disjoint hexagons the subgraph, obtained from G by deleting all these k hexagons together with their incident edges, has at least one perfect matching. In this paper, some criteria are given to determine whether or not a given coronoid system is k-coverable.

1. Introduction

The terms "benzenoid system" and "coronoid system" are defined in the usual way [$1-3$]. Thus, a benzenoid system (BS), also called "honeycomb system" [1], is a finite connected plane graph with no cut vertices in which each interior face is a regular hexagon of side length 1 , whereas a coronoid system (CS) G can be obtained from a benzenoid system B by deleting at least one interior vertex together with the incident edges, and/or at least one interior edge such that each edge of G belongs to at least one hexagon of G and a unique non-hexagon interior face emerges. The graph depicted in fig. 1(a) is a coronoid system, while the one depicted in fig. 1(b) is not a coronoid system since it has some edges not belonging to any of its hexagons.

The unique non-hexagon interior face of a CS G is called a hole. The perimeter of the hole is called the inner perimeter of G. The perimeter of the BS from which G is obtained is called the outer perimeter of G. A hexagon of G is said to be a side hexagon of G if it has at least one edge lying on the outer or inner perimeter of G; otherwise, it is called a non-side hexagon of G.

A perfect matching, which corresponds to a Kekulé structure [4] in organic chemistry, in a graph G is a set of pairwise non-adjacent edges of G that spans the

[^0]
a

b

Fig. 1.
vertices of G. Let G be a BS or a CS and M a perfect matching of G. A circuit of G with h edges is said to be an M-conjugated circuit [5] if it has $h / 2 M$-double bonds.

An edge of a CS G is said to be interior if it does not lie on the outer or inner perimeter of G. An interior edge of G is said to be a chord if its two end-vertices are on the outer and/or inner perimeter of G. A chord is of type I if its two endvertices are simultaneously on the outer or inner perimeter of G. Otherwise, it is of type II (cf. fig. 5 below).

Let $K=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}(k \geq 1)$ be a set of pairwise disjoint hexagons of a BS or CS G. $G-K$ denotes the subgraph obtained from G by deleting all the hexagons of K together with their incident edges. K is said to be a cover of G if $G-K$ has at least a perfect matching or is an empty graph. If K is a cover of G, then we will also say that hexagons $s_{1}, s_{2}, \ldots, s_{k}$ form a cover of G. A BS or a CS G is said to be k-coverable if for every k (or fewer) pairwise disjoint hexagons the subgraph, obtained from G by deleting all these k hexagons together with their incident edges, has at least one perfect matching.

The concept of a cover is just a graph-theoretical reformulation of the concept "generalized Clar formula" occurring in the so-called Clar aromatic sextet theory [6,7]. The problem concerning coverability is an interesting mathematical one. For any positive integer k, the criterion to determine whether or not a given BS is k coverable is known [8-10].

THEOREM 1 [8]
A BS B is 1 -coverable if and only if the perimeter of B is a conjugated circuit for some perfect matching of B.

THEOREM 2 [9]
A BS B is 2 -coverable if and only if, for any side-hexagon s of B, each connected component of $B(s)$ is 1 -coverable and $B-s-B(s)$ has a perfect matching;
where $B-s$ is the subgraph obtained from B by deleting the hexagon s and its incident edges, $B(s)$ is the subgraph of $B-s$ obtained by deleting the edges and vertices which do not belong to any hexagon of $B-s$.

THEOREM 3 [10]

A BS B is 3-coverable if and only if, for any side-hexagon s of B, each component of $B(s)$ is 2-coverable and $B-s-B(s)$ has a perfect matching.

THEOREM 4 [10]

A BS B is $k(\geq 3)$-coverable if and only if B is 3-coverable. If B is a 3coverable BS without chords, then B is a hexagon, or a T_{n}, or a crown (cf. fig. 7 below). If B is a 3-coverable BS with a chord e, then both $B(e)$ and $B^{\prime}(e)$ are 3coverable, where $B(e)$ and $B^{\prime}(e)$ are subgraphs of B of which the union is B, and the intersection is $\{e\}$.

For a CS G, only the following result is known [9].

THEOREM 5 [9]

A CS G is 1 -coverable if and only if each of its outer and inner perimeters is a conjugated circuit for some perfect matching of G.

The main purpose of this paper is to solve the problem: what is the criterion for a CS to be $k(\geq 2)$-coverable?

2. 2-coverable coronoid systems

Let G be a CS, s be a hexagon of G. The following notation is used throughout this section:
$C(G)$: the union of the outer and inner perimeters of G;
$E(G)$: the edge set of G;
$E(C)$: the set of edges on the cycle C of G;
$C(s)$: the perimeter of the hole appearing after deleting the hexahon s together with the incident edges if s is a non-side hexagon of G;
$G-s$: the subgraph of G obtained from G by deleting the hexagon s together with the incident edges.
$G(s)$: the subgraph of $G-s$ obtained by deleting the edges and vertices which do not belong to any hexagon of $G-s$.

Recall that a fixed single bond is an edge of G which does not belong to any perfect matching of G, while a fixed double bond is an edge of G which belongs
to every perfect matching of G. Both fixed single bonds and fixed double bonds are called fixed bonds.

Before continuing, we cite three lemmas from ref. [9].

LEMMA 6 [9]

Let G be a BS or a CS with a fixed single bond e, M be a perfect matching of G such that the edges of M saturating the end vertices of e are not parallel. Then all the edges e_{1}, \ldots, e_{n} (see fig. 2) are fixed single bonds, where e_{n} is on the perimeter of G.

Fig. 2.

LEMMA 7 [9]
Let G be a BS or a CS with some fixed single bonds. Then at least one of them lies on the perimeter of G.

LEMMA 8 [9]
Let G be a CS without any fixed bond. Then each of the hexagons and the perimeters of G is a conjugated circuit for some perfect matching of G.

The following lemma is useful in the proof of our main theorem.

LEMMA 9

Let e be a fixed single bond of a CS G. The endpoints of e are both of degree 3. Let e_{1}, e_{2}, e_{3} and e_{4} be the four edges adjacent to e, as in fig. 3. If neither of e_{1} and e_{2} is a fixed double bond of G, then there is a perfect matching of G in which e_{3} and e_{4} are simultaneously double bonds.

$$
\begin{aligned}
& =M_{1} \text {-double bond } \\
& \simeq M_{2} \text {-double bond }
\end{aligned}
$$

Fig. 3.

Proof

Since e is a fixed single bond and e_{1} is not a fixed double bond, there is a perfect matching M_{1} in which e_{3} is an M_{1}-double bond. If e_{4} is also an M_{1}-double bond, then M_{1} is the desired perfect matching of G. Otherwise, e_{2} is an M_{1}-double bond. Similarly, there is a perfect matching M_{2} in which e_{4} is an M_{2}-double bond, and e_{1} is also an M_{2}-double bond if e_{3} is not an M_{2}-double bond. The symmetric difference of M_{1} and M_{2}, i.e. ($\left.M_{1} \cup M_{2}\right)-\left(M_{1} \cap M_{2}\right)$, constitutes a set of pairwise disjoint $M_{1}\left(M_{2}\right)$-conjugated circuits. Let D denote the $M_{1}\left(M_{2}\right)$-conjugated circuit containing e_{1} and e_{3}. Then D will not contain e_{2} and e_{4}. Otherwise, D will be divided into two odd cycles containing e, contradicting that G is a bipartite graph and has no odd cycles. Now let $M=\left(M_{2} \cup E(D)\right)-\left(M_{2} \cap E(D)\right)$. It is not difficult to see that M is a perfect matching of G in which both e_{3} and e_{4} are M-double bonds.

Now we are in a position to give our main theorem which provides a criterion for a CS to be 2-coverable.

THEOREM 10

A CS G is 2-coverable if and only if every pair of disjoint side hexagons of G forms a cover of G.

Proof

The necessity is evident.
We prove the sufficiency by contradiction. Assume that G satisfies the condition of the theorem and is not 2 -coverable. Then there are two disjoint hexagons s^{\prime} and $s^{\prime \prime}$ which do not form a cover of G, and at least one them, say s^{\prime}, is a non-side hexagon of G. In the following, we prove three conclusions which will lead to a contradiction.

CONCLUSION 1

For any side hexagon s^{*} of G which is disjoint with s^{\prime}, s^{*} and s^{\prime} form a cover of G. In fact, we can prove a stronger one: $G\left(s^{*}\right)$ is 1 -coverable. It is not difficult to see that each component of $G-s^{*}-G\left(s^{*}\right)$ is a path if $G-s^{*}-G\left(s^{*}\right)$ is not an empty graph. Moreover, each such path is connected to a side hexagon of G which is disjoint with s^{*}. Since s^{*} and each side hexagon which is disjoint with s^{*} form a cover of G, each component of $G-s^{*}-G\left(s^{*}\right)$ has a perfect matching. Therefore, $G\left(s^{*}\right)$ has perfect matchings. If $G\left(s^{*}\right)$ has no fixed bond, then each of the perimeters of $G\left(s^{*}\right)$ is a conjugated circuit for some perfect matching of $G\left(s^{*}\right)$ (lemma 8), and hence $G\left(s^{*}\right)$ is 1-coverable (theorem 5). Now the remaining thing to prove is that $G\left(s^{*}\right)$ has no fixed bond. By lemma 7, it suffices to prove that there is no fixed bond on the perimeters of $G\left(s^{*}\right)$. By the condition of the theorem, each of those side
hexagons of $G\left(s^{*}\right)$ which are also side hexagons of G is a cover of $G\left(s^{*}\right)$ and has no fixed bond of $G\left(s^{*}\right)$. Thus, if $G\left(s^{*}\right)$ has fixed bonds on its perimeters, they are on those side hexagons of $G\left(s^{*}\right)$ which are not side hexagons of G. Let e be such a fixed single bond, e_{1} and e_{1}^{\prime} be the two edges which are adjacent to e and are on the perimeter of $G\left(s^{*}\right)$. We claim that at least one of e_{1} and e_{1}^{\prime} is a fixed double bond of $G\left(s^{*}\right)$. This is evident when one end vertex of e is of degree 2 in $G\left(s^{*}\right)$. Now suppose that both of the end vertices of e are of degree 3 in $G\left(s^{*}\right)$. If neither of e_{1} and e_{1}^{\prime} is a fixed double bond of $G\left(s^{*}\right)$, then by lemma 9 there is a perfect matching M of $G\left(s^{*}\right)$ such that both e^{*} and $e^{* *}$ are M-double bonds (see fig. 4). By

Fig. 4.
lemma 6 , there will be a fixed single bond on the side hexagons of $G\left(s^{*}\right)$ which is also a side hexagon of G, a contradiction. Hence, at least one of e_{1} and e_{1}^{\prime}, say e_{1}, is a fixed double bond of $G\left(s^{*}\right)$. By repeated use of lemma 6 , we come to the conclusion that all the edges e_{2}, \ldots, e_{n} (see fig. 4) are fixed double bonds of $G\left(s^{*}\right)$, where e_{n} is on the side hexagon of $G\left(s^{*}\right)$ which is also a side hexagon of G, again a contradiction. This implies that $G\left(s^{*}\right)$ has no fixed bond and is 1-coverable.

CONCLUSION 2

There is a fixed bond of $G-s^{\prime}$ on $C\left(s^{\prime}\right)-C(G)$. By the assumption that s^{\prime} and $s^{\prime \prime}$ do not form a cover of $G, G-s^{\prime}$ is not 1 -coverable. Then by theorem 5 and lemma $8, G-s^{\prime}$ has some fixed bonds. Moreover, there is at least one fixed single bond on $C(G)$ or $C\left(s^{\prime}\right)$ (lemma 7). By conclusion 1, any edge in $C(G)-C\left(s^{\prime}\right)$ is not a fixed bond since it belongs to a side hexagon of G which forms a cover of $G-s^{\prime}$. Hence, the fixed bonds appear on $C\left(s^{\prime}\right)$. If $C(G) \cap C\left(s^{\prime}\right)=\emptyset$, then $C\left(s^{\prime}\right)=C\left(s^{\prime}\right)-C(G)$, and the conclusion follows. Now suppose that $C(G) \cap C\left(s^{\prime}\right)$ $\neq \emptyset$. It is easy to see that if one of the edges $C(G) \cap C\left(s^{\prime}\right)$ is on a conjugated circuit for some perfect matching of $G-s^{\prime}$, then all the edges of $C(G) \cap C\left(s^{\prime}\right)$ must be on the same conjugated circuit. This means that the edges of $C(G) \cap C\left(s^{\prime}\right)$ are
simultaneously fixed bonds or not. If all the fixed bonds of $C\left(s^{\prime}\right)$ are on $C(G) \cap C\left(s^{\prime}\right)$, then all the edges of $C(G) \cap C\left(s^{\prime}\right)$ are fixed bonds. Furthermore, those edges of $C(G) \cap C\left(s^{\prime}\right)$ connected to $G\left(s^{\prime}\right)$ are fixed single bonds. Thus, $G-s^{\prime}-G\left(s^{\prime}\right)$ has a unique perfect matching and $G\left(s^{\prime}\right)$ has perfect matchings. Since $C\left(G\left(s^{\prime}\right)\right)$ $=\left(C(G) \cup C\left(s^{\prime}\right)\right)-\left(C(G) \cap C\left(s^{\prime}\right)\right)$ has no fixed bonds, $G\left(s^{\prime}\right)$ is 1 -coverable (lemma 7, lemma 8 and theorem 5). Note that $s^{\prime \prime}$ is completely in $G\left(s^{\prime}\right)$. Thus, s^{\prime} and $s^{\prime \prime}$ form a cover of G, contradicting our assumption. This contradiction is caused by assuming that all the fixed bonds of $C\left(s^{\prime}\right)$ are on $C(G) \cap C\left(s^{\prime}\right)$. Consequently, there is at least one fixed bond on $C\left(s^{\prime}\right)-C(G)$.

CONCLUSION 3

There is a fixed bond of $G-s^{\prime}$ belonging to a side hexagon of G. By conclusion 2 , there is a fixed bond, say e, on $C\left(s^{\prime}\right)-C(G)$. Without loss of generality, we may assume that e is a fixed single bond (see fig. 5). If neither e^{\prime} nor $e^{\prime \prime}$ is a

Fig. 5.
fixed double bond of $G-s^{\prime}$, then by lemma 9 there is a perfect matching of $G-s^{\prime}$ in which both e^{*} and $e^{* *}$ are double bonds. Thus, by lemma 6 , a fixed single bond will be found on a side hexagon of G which is disjoint with s^{\prime}, a contradiction. Therefore, one of e^{\prime} and $e^{\prime \prime}$, say e^{\prime}, is a fixed double bond of $G-s^{\prime}$. Reasoning in a similar way as before, a series of double fixed bonds are found: $e_{1}, e_{2}, \ldots, e_{n}$, where e_{n} is on a side hexagon of G.

It is easy to see that conclusion 3 contradicts conclusion 1. This contradiction establishes the sufficiency of the theorem.

3. $k(\geq 3)$-coverable coronoid systems

In this section, we give a constructive criterion for a CS G to be $k(\geq 3)$ coverable. Let G be a CS with a chord e of type I. It is not difficult to see that G is separated by e into two parts: one is a BS , denoted by $\mathrm{BS}(e)$; the other is a CS, denoted by $\operatorname{CS}(e)$. Thus, for any chord e of type $\mathrm{I}, \mathrm{BS}(e)$ and $\operatorname{CS}(e)$ have exactly one edge e in common (see fig. 6). A chord e of type I is said to be maximal if for any chord $e^{*} \neq e$ of type $\mathrm{I}, \mathrm{BS}(e)$ is not a subgraph of $\mathrm{BS}\left(e^{*}\right)$. For example, the CS G shown in fig. 6 has two maximal chords of type I: e_{3} and e_{4}.

Fig. 6.

A CS G without a chord of type I is said to be a normal CS. Let G be a CS with maximal chords of type $\mathrm{I}: e_{1}^{*}, \ldots, e_{n}^{*}$. It is clear that G^{\prime} $=\operatorname{CS}\left(e_{1}^{*}\right) \cap \operatorname{CS}\left(e_{2}^{*}\right) \cap \ldots \cap \operatorname{CS}\left(e_{n}^{*}\right)$ is a normal CS. Let G be a normal CS with chords of type II arranged clockwise as follows: $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{t}^{\prime}$. Denote the section of G between chords e_{i}^{\prime} and e_{i+1}^{\prime} (inclusive of e_{i}^{\prime} and $\left.e_{i+1}^{\prime}\right)$ by $G\left(e_{i}^{\prime}, e_{i+1}^{\prime}\right)$, where $i+1$ is taken modulo $t, i=1,2, \ldots, t$. Then $G\left(e_{i}^{\prime}, e_{i+1}^{\prime}\right)$ is a BS.

The BSs depicted in fig. 7 are called a crown and a T_{n} ($n \geq 2$), respectively. For each T_{n}, we specify two edges on the perimeter as attachable edges (see fig. 7). For a crown, the six edges on the perimeter with two end vertices of degree 2 are divided into two sets $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{1}^{*}, e_{2}^{*}, e_{3}^{*}\right\}$ (see fig. 7). Two or three edges

a crown

a T_{n} (n is odd)

a T_{n} (n is even)
e_{1} and e_{2} are attachable edges of T_{n}

Fig. 7.
of them constitute an attachable combination if they belong to the same set. For example, e_{1} and e_{2} form an attachable combination, while e_{1} and e_{1}^{*} do not. For a single hexagon, two or three mutually non-parallel and non-adjacent edges constitute an attachable combination.

LEMMA 11

Let G be a CS. If there are three side hexagons of G, s_{1}, s_{2} and s_{3} as shown in fig. 8, and vertex v is of degree 2 , then G is not 2 -coverable.

Fig. 8.

Proof

Since s_{1} and s_{3} do not form a cover of G, G is not 2-coverable.

LEMMA 12

Let G be a 3-coverable CS. Then any two non-side hexagons of G are disjoint.

Proof

By contradiction. If G has two non-side hexagons s^{\prime} and $s^{\prime \prime}$ with an edge in common, then G has a subgraph as shown in fig. 9. It is easy to check that s_{1}, s_{2} and s_{3} do not form a cover of G. The lemma follows.

Fig. 9.
LEMMA 13
Let G be a 3-coverable CS. Then G has no such subgraph, as shown in fig. 10.

Fig. 10.

Proof

Since s_{1}, s_{2} and s_{3} do not form a cover, the graph shown in fig. 10 cannot be a subgraph of any 3-coverable CS.

LEMMA 14

Let G be a 3-coverable CS, s be a non-side hexagon of G. Then the vertices on the perimeter of the crown containing s as its centre are all on the perimeter of G.

Proof

The lemma follows from the fact that there is no hexagon on the positions, each of which has a star (see fig. 11) (lemma 13).

(Fig. 11).

LEMMA 15

Let G be a 3 -coverable CS. Then G contains no such side hexagon that has exactly one pair of parallel edges on the perimeter of G (see fig. 12).

Fig. 12.

Proof

If the lemma is false, we can find a side hexagon s of G with exactly two parallel edges e_{1} and e_{2} on the perimeter of G (see fig. 12). Then hexagons s_{1}^{*}, s_{2}^{*}, s_{3}^{*} and s_{4}^{*} belong to G. Without loss of generality, we may assume that s is uppermost in the sense that s^{\prime} is not a hexagon having the same property as s, or s^{\prime} does not belong to G. By lemma 13 , neither s_{1} nor s_{2} belongs to G. By lemma 11 , none of s_{3} and s_{4} belongs to G. Hence, s^{\prime} must belong to G (otherwise e_{1} and e_{2} are fixed single bonds of G, a contradiction). Since s_{1}^{*} and s_{4}^{*} form a cover of G, at least one of s_{5} and s_{6} belongs to G. Again by lemma 11, if one of s_{5} and s_{6} belongs to G, the other must belong to G too. This means that s^{\prime} is a side hexagon with exactly two parallel edges on the perimeter of G, which is contrary to the selection of s. The proof is thus completed.

THEOREM 16

Let G be a normal $k(\geq 3)$-coverable CS. Then G has chords of type II: e_{1}, \ldots, e_{m}. Each section $G\left(e_{i}, e_{i+1}\right)$ is either a T_{n} with attachable edges e_{i} and e_{i+1}, or a crown, or a hexagon, where e_{i} and e_{i+1} constitute an attachable combination.

Proof

Let G be a $k(\geq 3)$-coverable CS, s be any hexagon of G. We want to prove that s is contained in a section of G which is a T_{n}, or a crown, or a hexagon.

Case 1. None of the vertices of s lies on the perimeter of G, i.e. s is a nonside hexagon of G. By lemma 14 , all the vertices of the crown containing s as its centre hexagon are on the perimeter of G. This implies that there are two chords of type II, say e_{i} and e_{i+1}, on the perimeter of the crown, and $G\left(e_{i}, e_{i+1}\right)$ is a crown.

We claim e_{i} and e_{i+1} constitute an attachable combination. Let $e_{i}=e_{1}$ (cf. fig. 7). Then e_{i+1} cannot be $e_{j}^{*}, j=1,2,3$. Otherwise, we can find three hexagons of G : the centre hexagon of the crown, the two hexagons of G containing the edges e_{i} and e_{i+1}, respectively, which do not belong to the crown. It is not difficult to check that these three hexagons do not form a cover of G, contradicting that G is 3-coverable.

Case 2. Hexagon s has exactly two vertices on the perimeter of G. Then G has a subgraph which is a T_{3} (see fig. 13). Let T_{n} be the maximal subgraph of G containing s in the sense that there is no T_{n+1} which is a subgraph of G and contains s. By lemma 13 , it is clear that there is no hexagon of G on the positions,

Fig. 13.
each of which has a star. By lemma 14, there is no hexagon on the positions, each of which has a double-star. There is no hexagon on position 1 (lemma 11). Again by lemma 11 , if there is a hexagon on position 2 , there must be a hexagon on position 3 . Then we find a T_{n+1} containing s, contradicting the maximality of T_{n}. Therefore, there is no hexagon of G on position 2 . This implies that e_{1} is either a chord of G or an edge on the perimeter of G. Analogously, edge e_{2} is either a chord of G or an edge on the perimeter of G. Since G is a normal CS, both e_{1} and e_{2} are chords of type II. Clearly, the section $G\left(e_{1}, e_{2}\right)$ is a T_{n} and e_{1} and e_{2} are attachable edges of T_{n}.

Case 3. Hexagon s has exactly three vertices on the perimeter of G. By lemma 11, this is impossible.

Case 4. Hexagon s has exactly four vertices on the perimeter of G. By lemma 15 , these four vertices cannot be contained in two parallel edges of s. Hence, s has three consecutive edges or two non-parallel, non-incident edges on the perimeter of G.

Subcase 4.1. Hexagon s has three consecutive edges on the perimeter of G (see fig. 14). It is clear that in the case when s_{2} does not belong to G, neither s_{4} nor s_{5} belongs to G (lemmas 11 and 15). Similarly, if s_{1} does not belong to G, neither of s_{6} and s_{7} belongs to G. Hence, if neither of s_{1} and s_{2} belongs to G, e is a chord of type I, which is contrary to the fact that G is normal. Therefore, at least one of s_{1} and s_{2} must belong to G. Suppose that s_{1} belongs to G. Then by lemma 11 , one or both of s_{2} and s_{3} must belong to G. Thus, the hexagon s^{*} is one with

Fig. 14.
exactly two vertices on the perimeter of G, or is a non-side hexagon of G. It will be reduced to case 1 or case 2 . Therefore, s^{*} is contained in a section of G which is a crown or a T_{n}. Consequently, s is contained in a crown or a T_{n} which is a section of G.

Subcase 4.2. Hexagon s has two non-parallel and non-incident edges on the perimeter of G (see fig. 15). By lemma 13, there is no hexagon of G on the positions, each of which has a star. By lemma 11, no hexagon of G appears on the position, each of which has a double star. If on one of the positions 1 and 2 there

Fig. 15.
is a hexagon of G, s^{\prime} or $s^{\prime \prime}$ will be a hexagon with three consecutive edges on the perimeter of G, and it can be reduced to subcase 4.1. Otherwise, there is a hexagon on position 3 , and e_{i} and e_{i+1} are chords of type II, and the section $G\left(e_{i}, e_{i+1}\right)$ is a T_{2}.

Case 5. Hexagon s has five vertices on the perimeter of G. If on the position with a star (see fig. 16) there is no hexagon of G, then G has no hexagon on each of the positions labelled by $1,2,3$ and 4 (lemmas 11 and 15). Thus, G is a BS with

Fig. 16.
three hexagons, a contradiction. Therefore, there must be a hexagon on the position with a star, and s^{*} is a hexagon of G with at most four vertices on the perimeter of G. Consequently, it can be reduced to one of the above cases.

Case 6. Hexagon s has six vertices on the perimeter of G. Since G is a normal CS, s has exactly chords of type II. It is not difficult to verify that these two chords constitute an attachable combination of s.

Let T_{n}^{-}and T_{n}^{--}denote the subgraph of T_{n} obtained from T_{n} by deleting one and two attachable edges of T_{n}, respectively (see fig. 17).

$T_{n}{ }^{-}$

$T_{n}{ }^{--}$

Fig. 17.
We have the following:
LEMMA 17

$$
T_{n}^{-} \text {and } T_{n}^{--} \text {are } k(\geq 3) \text {-coverable. }
$$

Proof

Let $K=\left\{s_{1}, \ldots, s_{k}\right\}$ be a set of $k(\geq 3)$ pairwise disjoint hexagons of T_{n}, where $s_{i} \neq s_{1}^{\prime}, s_{i} \neq s_{2}^{\prime}$ for $i=1, \ldots, k$ (see fig. 17). Let M be a perfect matching of $T_{n}-K$. To prove that K is a cover of T_{n}^{--}, it suffices to prove that both e_{1} and e_{2} are M-double bonds. If one of the hexagons s_{1}^{*}, s_{2}^{*} and s_{3}^{*} belongs to K, then e_{1} is an M-double bond. If none of them belong to K, then it is not difficult to see that edge e_{1}^{*} is an M-double bond, while edges e_{2}^{*} and e_{3}^{*} are M-single bonds. Without loss of generality, we may assume that M is a perfect matching of $T_{n}-K$ in which e_{1} is an M-double bond. By an analogous reasoning, e_{2} is an M-double bond. Hence, K is also a cover of $T_{n}{ }^{--}$. By the arbitrariness of $K, T_{n}{ }^{--}$is $k(\geq)$-coverable.

We can prove that T_{n}^{-}is $k(\geq 3)$-coverable in a similar way.
THEOREM 18
Let G be a normal CS with chords of type II: e_{1}, \ldots, e_{t} such that each section $G\left(e_{i}, e_{i+1}\right)$ is a T_{n} with attachable edges e_{i} and e_{i+1}, or a crown, or a hexagon, where e_{i} and e_{i+1} constitute an attachable combination. Then G is $k(\geq 3)$ coverable.

Proof

Let $K=\left\{s_{1}, \ldots, s_{k}\right\}$ be a set of $k(\geq 3)$ pairwise disjoint hexagons of G, $K_{i}=K \cap G\left(e_{i}, e_{i+1}\right), i=1, \ldots, t$. We divide G into t separate parts according to the following regulations: (1) Each chord belongs to exactly one part. (2) If the hexagon of $G\left(e_{i}, e_{i+1}\right)$ containing chord e_{i} (or e_{i+1}) belongs to K_{i}, then e_{i} (or e_{i+1}) must belong to the i th part. (3) If chord e_{i} does not belong to any hexagon of K, then e_{i} belongs to the i th part. It is clear that each part is a T_{n}, or a $T_{n}{ }^{-}$, or a $T_{n}{ }^{--}$, or one of the graphs depicted in fig. 18. All these are $k(\geq 3)$-coverable (theorem 4 and lemma 17). Hence, K_{i} is a cover of the i th part. Consequently, K is a cover of G, and G is thus $k(\geq 3)$-coverable.

Fig. 18.

THEOREM 19

A normal CS G is $k(\geq 3)$-coverable if and only if G has chords of type II: e_{1}, \ldots, e_{t} and each section $G\left(e_{i}, e_{i+1}\right)$ is a T_{n} with attachable edges e_{i} and e_{i+1}, or a crown, or a hexagon where e_{i} and e_{i+1} constitute an attachable combination.

Proof

Immediate from theorems 16 and 18.
If G is not a normal CS , then G has some chords of type 1 . Let $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ be the maximal chords of type I . Then $G^{\prime}=\mathrm{BS}\left(e_{1}^{\prime}\right) \cap \mathrm{BS}\left(e_{2}^{\prime}\right) \cap \ldots \cap \mathrm{BS}\left(e_{m}^{\prime}\right)$ is a normal CS, as we mentioned before.

THEOREM 20

Let G be a CS with chords of type $\mathrm{I}, e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ be the maximal chords of type I. Then G is $k(\geq 3)$-coverable if and only if $\operatorname{BS}\left(e_{i}^{\prime}\right)(i=1, \ldots, m)$ is a $k(\geq 3)$ coverable BS and G^{\prime} is a normal $k(\geq 3)$-coverable CS.

Proof

Suppose that G is $k(\geq 3)$-coverable. Let $K=\left\{s_{1}, \ldots, s_{k}\right\}$ be a set of k pairwise disjoint hexagons of $\mathrm{BS}\left(e_{i}^{\prime}\right)$, where e_{i}^{\prime} is a maximal chord of type I , $i=1, \ldots, m$. Since G is $k(\geq 3)$-coverable, $G-K$ has a perfect matching, say M. Denote the hexagon of $\operatorname{CS}\left(e_{i}^{\prime}\right)$ containing the chord e_{i}^{\prime} by s^{*}. Since s^{*} itself is a cover
of $G, \mathrm{BS}\left(e_{i}^{\prime}\right)$ has perfect matchings. Hence, $\mathrm{BS}\left(e_{i}^{\prime}\right)$ has an even number of vertices. This implies that if e_{i}^{\prime} is not an M-double bond, then the two end vertices of e_{i}^{\prime} are saturated by M-double bonds which are simultaneously in $\operatorname{CS}\left(e_{i}^{\prime}\right)$ or $\mathrm{BS}\left(e_{i}^{\prime}\right)$. Therefore, $\mathrm{BS}\left(e_{i}^{\prime}\right)-K$ has a perfect matching: $\mathrm{BS}\left(e_{i}^{\prime}\right) \cap M$ if e_{i}^{\prime} is in M or the two M-double bonds saturating the end vertices of e_{i}^{\prime} are in $\mathrm{BS}\left(e_{i}^{\prime}\right)$; or $\mathrm{BS}\left(e_{i}^{\prime}\right) \cap M \cup\left\{e_{i}^{\prime}\right\}$ if the two M-double bonds saturating the end vertices of e_{i}^{\prime} are in $\operatorname{CS}\left(e_{i}^{\prime}\right)$. Consequently, K is a cover of $\mathrm{BS}\left(e_{i}^{\prime}\right)$ and thus $\mathrm{BS}\left(e_{i}^{\prime}\right)$ is $k(\geq 3)$-coverable. Similarly, we can prove that G^{\prime} is $k(\geq 3)$-coverable.

Conversely, suppose that G^{\prime} and $\operatorname{BS}\left(e_{i}^{\prime}\right)(i=1, \ldots, m)$ are $k(\geq 3)$-coverable. By theorem 16, it is not difficult to see that e_{i}^{\prime} must be a member of an attachable combination of a crown or a hexagon (cf. fig. 6). Now we can prove that G is $k(\geq 3)$-coverable in a similar way as in the proof of theorem 18 . We omit the details.

4. General remark

A multi-CS is a CS with more than one hole. By the above results, the constructive feature of $k(\geq 3)$-coverable multi-CSs is already clear. We do not discuss the details here.

Acknowledgement

The authors would like to thank Dr. I. Gutman for his valuable comments.

References

[1] F. Harary, Beitrage zur Graphentheorie, ed. H. Sachs, H.J. Voss and H. Walther, B.G. (1968).
[2] I. Gutman, Bull. Soc. Chim. Beograd 47(1982)453.
[3] J. Brunvoll, B.N. Cyvin and S.J. Cyvin, J. Chem. Inf. Comput. Sci. 27(1987)14.
[4] S.J. Cyvin and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons (Springer, Berlin, 1988).
[5] N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, 1983).
[6] I. Gutman, in: Proc. 4th Yugoslav Seminar in Graph Theory, Novi Sad (1983).
[7] N. Ohkami, A. Motoyama, T. Yamaguchi, H. Hosoya and I. Gutman, Tetrahedron 37(1980)1113.
[8] F.U. Zhang and R.S. Chen, Discr. Appl. Math. 30(1991).
[9] F.J. Zhang and M.I. Zheng, to be published.
[10] M.L. Zheng, to be published.

[^0]: *Supported by NSFC.

