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A coronoid system G is k-coverable if for every k (or fewer) pairwise disjoint 
hexagons the subgraph, obtained from G by deleting all these k hexagons together with 
their incident edges, has at least one perfect matching. In this paper, some criteria are 
given to determine whether or not a given coronoid system is k-coverable. 

1. Introduction 

The terms "benzenoid system" and "coronoid system" are defined in the usual 
way [1-3]. Thus, a benzenoid system (BS), also called "honeycomb system" [1], is 
a finite connected plane graph with no cut vertices in which each interior face is 
a regular hexagon of side length 1, whereas a coronoid system (CS) G can be 
obtained from a benzenoid system B by deleting at least one interior vertex together 
with the incident edges, and/or at least one interior edge such that each edge of G 
belongs to at least one hexagon of G and a unique non-hexagon interior face 
emerges. The graph depicted in fig. l(a) is a coronoid system, while the one depicted 
in fig. l(b) is not a coronoid system since it has some edges not belonging to any 
of its hexagons. 

The unique non-hexagon interior face of a CS G is called a hole. The perimeter 
of the hole is called the inner perimeter of G. The perimeter of  the BS from which 
G is obtained is called the outer perimeter of G. A hexagon of G is said to be a 
side hexagon of G if it has at least one edge lying on the outer or inner perimeter 
of  G; otherwise, it is called a non-side hexagon of G. 

A perfect matching, which corresponds to a Kekul6 structure [4] in organic 
chemistry, in a graph G is a set of pairwise non-adjacent edges of G that spans the 
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Fig. 1. 

vertices of G. Let G be a BS or a CS and M a perfect matching of G. A circuit of  
G with h edges is said to be an M-conjugated circuit [5] if it has h / 2  M-double bonds. 

An edge of  a CS G is said to be interior if it does not lie on the outer or inner 
perimeter of  G. An interior edge of  G is said to be a chord if its two end-vertices 
are on the outer and/or inner perimeter of  G. A chord is of  type I if its two end- 
vertices are simultaneously on the outer or inner perimeter of  G. Otherwise, it is 
of  type II (cf. fig. 5 below). 

Let K = {sl, s2 . . . . .  sk} (k > 1) be a set of  pairwise disjoint hexagons of a BS 
or CS G. G - K denotes the subgraph obtained from G by deleting all the hexagons 
of  K together with their incident edges. K is said to be a cover of  G if G - K has 
at least a perfect matching or is an empty graph. If K is a cover of G, then we will 
also say that hexagons Sl, s2 . . . . .  sk form a cover of G. A BS or a CS G is said 
to be k-coverable if  for every k (or fewer) pairwise disjoint hexagons the subgraph, 
obtained from G by deleting all these k hexagons together with their incident edges, 
has at least one perfect matching. 

The concept of  a cover is just a graph-theoretical reformulation of  the concept 
"generalized Clar formula" occurring in the so-called Clar aromatic sextet theory 
[6,7]. The problem concerning coverability is an interesting mathematical one. For 
any positive integer k, the criterion to determine whether or not a given BS is k- 
coverable is known [8-10] .  

THEOREM 1 [8] 

A BS B is 1-coverable if and only if the perimeter of  B is a conjugated circuit 
for some perfect matching of  B. 

THEOREM 2 [9] 

A BS B is 2-coverable if  and only if, for any side-hexagon s of B, each 
connected component of B ( s )  is 1-coverable and B - s - B ( s )  has a perfect matching; 
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where B -  s is the subgraph obtained from B by deleting the hexagon s and its 
incident edges, B(s) is the subgraph of  B -  s obtained by deleting the edges and 
vertices which do not belong to any hexagon of B - s. 

THEOREM 3 [10] 

A BS B is 3-coverable if and only if, for any side-hexagon s of B, each 
component of B(s) is 2-coverable and B -  s - B ( s )  has a perfect matching. 

THEOREM 4 [10] 

A BS B is k(>3)-coverable if and only if B is 3-coverable. If B is a 3- 
coverable BS without chords, then B is a hexagon, or a Tn, or a crown (cf. fig. 7 
below). If B is a 3-coverable BS with a chord e, then both B(e) and B'(e) are 3- 
coverable, where B(e) and B'(e) are subgraphs of B of  which the union is B, and 
the intersection is {e}. 

For a CS G, only the following result is known [9]. 

THEOREM 5 [9] 

A CS G is 1-coverable if and only if each of its outer and inner perimeters 
is a conjugated circuit for some perfect matching of  G. 

The main purpose of this paper is to solve the problem: what is the criterion 
for a CS to be k(>2)-coverable? 

2. 2-coverable coronoid systems 

Let G be a CS, s be a hexagon of G. The following notation is used throughout 
this section: 

C(G) : 
E ( G ) :  

e(c) :  
C(s): 

G - s :  

G(s) : 

the union of the outer and inner perimeters of  G; 

the edge set of G; 

the set of  edges on the cycle C of G; 

the perimeter of  the hole appearing after deleting the hexahon s together 
with the incident edges if s is a non-side hexagon of G; 

the subgraph of  G obtained from G by deleting the hexagon s together with 
the incident edges. 

the subgraph of  G -  s obtained by deleting the edges and vertices which 
do not belong to any hexagon of G -  s. 

Recall that a fixed single bond is an edge of G which does not belong to any 
perfect matching of G, while a fixed double bond is an edge of G which belongs 
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tO every perfect matching of  G. Both fixed single bonds and fixed double bonds are 
called fixed bonds. 

Before continuing, we cite three lemmas from ref. [9]. 

LEMMA 6 [9] 

Let G be a BS or a CS with a fixed single bond e, M be a perfect matching 
of  G such that the edges of  M saturating the end vertices of e are not parallel. Then 
all the edges el . . . . .  e,, (see fig. 2) are fixed single bonds, where en is on the 
perimeter of  G. 

Fig. 2. 

LEMMA 7 [91 

Let G be a BS or a CS with some fixed single bonds. Then at least one of  
them lies on the perimeter of  G. 

LEMMA 8 [9] 

Let G be a CS without any fixed bond. Then each of the hexagons and the 
perimeters of  G is a conjugated circuit for some perfect matching of  G. 

The following lemma is useful in the proof of  our main theorem. 

LEMMA 9 

Let e be a fixed single bond of a CS G. The endpoints of  e are both of 
degree 3. Let e~, e2, e3 and e4 be the four edges adjacent to e, as in fig. 3. If  neither 
of  el and e2 is a fixed double bond of  G, then there is a perfect matching of G in 
which e3 and e4 are simultaneously double bonds. 

-- M1-double bond 

M2-double bond 

Fig. 3. 
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Proof  

Since e is a fixed single bond and el is not a fixed double bond, there is a 
perfect matching M1 in which e3 is an Ml-double bond. If e4 is also an M~-double 
bond, then MI is the desired perfect matching of G. Otherwise, e2 is an Ml-double 
bond. Similarly, there is a perfect matching M 2 in which e4 is an M2-double bond, 
and el is also an M2-double bond if e 3 is not an M2-double bond. The symmetric 
difference of Ml and M2, i.e. (M1 t3 M2) - (Ml n M2), constitutes a set of pairwise 
disjoint Ml(M2)-conjugated circuits. Let D denote the Ml(M2)-conjugated circuit 
containing el and e3. Then D will not contain e2 and e4. Otherwise, D will be 
divided into two odd cycles containing e, contradicting that G is a bipartite graph 
and has no odd cycles. Now let M = (M 2 u E(D))  - (M2 n E(D)).  It is not difficult 
to see that M is a perfect matching of G in which both e3 and e4 are M-double bonds. 

Now we are in a position to give our main theorem which provides a criterion 
for a CS to be 2-coverable. 

THEOREM 10 

A CS G is 2-coverable if and only if every pair of disjoint side hexagons of 
G forms a cover of G. 

Proof  

The necessity is evident. 

We prove the sufficiency by contradiction. Assume that G satisfies the condition 
of the theorem and is not 2-coverable. Then there are two disjoint hexagons s '  and 
s" which do not form a cover of G, and at least one them, say s' ,  is a non-side 
hexagon of G. In the following, we prove three conclusions which will lead to a 
contradiction. 

CONCLUSION 1 

For any side hexagon s* of G which is disjoint with s', s* and s '  form a cover 
of G. In fact, we can prove a stronger one: G(s*) is 1-coverable. It is not difficult 
to see that each component of G - s * -  G(s*) is a path if G - s* - G(s*) is not an 
empty graph. Moreover, each such path is connected to a side hexagon of G which 
is disjoint with s*. Since s* and each side hexagon which is disjoint with s* form 
a cover of G, each component of G - s* - G(s*) has a perfect matching. Therefore, 
G(s*) has perfect matchings. If G(s*) has no fixed bond, then each of the perimeters 
of G(s*) is a conjugated circuit for some perfect matching of G(s*) (lemma 8), and 
hence G(s*) is 1-coverable (theorem 5). Now the remaining thing to prove is that 
G(s*) has no fixed bond. By lemma 7, it suffices to prove that there is no fixed bond 
on the perimeters of G(s*). By the condition of the theorem, each of those side 
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hexagons of  G(s*) which are alSO side hexagons of  G is a cover of  G(s*) and has 
no fixed bond of  G(s*). Thus, if  G(s*) has fixed bonds on its perimeters, they are 
on those side hexagons of  G(s') which are not side hexagons of  G. Let e be such 
a fixed single bond, el and el be the two edges which are adjacent to e and are on 
the perimeter of  G(s*). We claim that at least one of  el and e~ is a fixed double 
bond of  G(s*). This is evident when one end vertex of  e is of  degree 2 in G(s*). 
Now suppose that both of  the end vertices of  e are of  degree 3 in G(s*). If neither 
of  el and e~ is a fixed double bond of  G(s*), then by lemma 9 there is a perfect 
matching M of  G(s*) such that both e* and e** are M-double bonds (see fig. 4). By 

Fig. 4. 

J 

J 

lemma 6, there will be a fixed single bond on the side hexagons of  G(s*) which is 
also a side hexagon of  G, a contradiction. Hence, at least one of  el and el, say el, 
is a fixed double bond of  G(s*). By repeated use of  lemma 6, we come to the 
conclusion that all the edges e2 . . . . .  en (see fig. 4) are fixed double bonds of  G(s*), 
where en is on the side hexagon of  G(s*) which is also a side hexagon of  G, again 
a contradiction. This implies that G(s*) has no fixed bond and is 1-coverable. 

CONCLUSION 2 

There is a fixed bond of  G - s '  on C(s') - C(G). By the assumption that s '  
and s"  do not form a cover of  G, G - s '  is not 1-coverable. Then by theorem 5 and 
lemma 8, G - s '  has some fixed bonds. Moreover, there is at least one fixed single 
bond on C(G) or C(s') (lemma 7). By conclusion 1, any edge in C(G)-  C(s') is 
not a fixed bond since it belongs to a side hexagon of  G which forms a cover 
of  G - s ' .  Hence, the fixed bonds appear on C(s'). If C(G)n  C(s')= 0, then 
C(s') = C(s') - C(G), and the conclusion follows. Now suppose that C(G) n C(s') 

0. It is easy to see that if one of  the edges C(G) n C(s') is on a conjugated circuit 
for some perfect matching of  G - s ' ,  then all the edges of  C(G) n C(s') must be 
on the same conjugated circuit. This means that the edges of  C(G) n C(s') are 
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simultaneously fixed bonds or not. If all the fixed bonds of C(s') are on C(G) n C(s') ,  
then all the edges of  C(G) n C(s') are fixed bonds. Furthermore, those edges of  
C(G) n C(s') connected to G(s') are fixed single bonds. Thus, G - s" - G(s ") has 
a unique perfect  matching and G(s') has perfect  matchings.  Since C(G(s')) 
= (C(G) u C(s ' ) ) -  (C(G) n C(s')) has no fixed bonds, G(s') is 1-coverable 
(lemma 7, lemma 8 and theorem 5). Note that s" is completely in G(s'). Thus, s '  
and s"  form a cover of  G, contradicting our assumption. This contradiction is 
caused by assuming that all the fixed bonds of C(s') are on C(G) n C(s'). Consequently, 
there is at least one fixed bond on C ( s ' ) -  C(G). 

CONCLUSION 3 

There is a fixed bond of G - s "  belonging to a side hexagon of  G. By 
conclusion 2, there is a fixed bond, say e, on C(s') - C(G). Without loss of  generality, 
we may assume that e is a fixed single bond (see fig. 5). If neither e '  nor e"  is a 

Fig. 5. 

fixed double bond of G - s ' ,  then by lemma 9 there is a perfect matching of  G - s '  
in which both e* and e** are double bonds. Thus, by lemma 6, a fixed single bond 
will be found on a side hexagon of G which is disjoint with s', a contradiction. 
Therefore, one of  e '  and e", say e ' ,  is a fixed double bond of G -  s' .  Reasoning 
in a similar way as before, a series of double fixed bonds are found: el, e2 . . . . .  en, 
where en is on a side hexagon of G. 

It is easy to see that conclusion 3 contradicts conclusion 1. This contradiction 
establishes the sufficiency of  the theorem. 
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3. k(>3)-coverable coronoid systems 

In this section, we give a constructive criterion for a CS G to be k(>3)-  
coverable. Let G be a CS with a chord e of  type I. It is not difficult to see that G 
is separated by e into two parts: one is a BS, denoted by BS(e); the other is a CS, 
denoted by CS(e). Thus, for any chord e of type I, BS(e) and CS(e) have exactly 
one edge e in common (see fig. 6). A chord e of  type I is said to be maximal if  
for any chord e* ~ e of  type I, BS(e) is not a subgraph of  BS(e*). For example, the 
CS G shown in fig. 6 has two maximal chords of  type I: e3 and e4. 

Fig. 6. 

A CS G without a chord of  type I is said to be a normal CS. Let 
G be a CS with maximal  chords of  type I: e~ . . . . .  e]. It is clear that G '  
= CS(e l ' ) n  C S ( e ~ ) n . . .  n CS(e]) is a normal CS. Let G be a normal CS with 
chords of  type II arranged clockwise as follows: e~, e~ . . . . .  et'. Denote the section 
of  G between chords e: and e:÷ 1 (inclusive of  e: and e'÷ l) by G(e:, e'i+ 1), where 
i + 1 is taken modulo t, i = 1, 2 . . . . .  t. Then G(ei; ei ÷ 1) is a BS. 

The BSs depicted in fig. 7 are called a crown and a T,, (n > 2), respectively. 
For each Tn, we specify two edges on the perimeter as attachable edges (see fig. 7). 
For a crown, the six edges on the perimeter with two end vertices of degree 2 are 
divided into two sets {el, e2, e3} and {e~, e~, e]} (see fig. 7). Two or three edges 
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e: e~ 

e~ v - e~ / .3 . . -  n .z ... rr 

a crown a T n (n is odd) a T n (n is even) 

e 1 and e 2 are attachable edges of T n 

Fig. 7. 

o f  them consti tute an attachable combinat ion i f  they belong to the same set. For  
example,  e~ and e2 form an attachable combination,  while el and e~ do not. For  a 
single hexagon,  two or three mutual ly  non-parallel and non-adjacent  edges consti tute 
an attachable combinat ion.  

LEMMA 11 

Let  G be a CS. If  there are three side hexagons of  G, sl ,  s2 and s3 as shown 
in fig. 8, and vertex v is of  degree 2, then G is not 2-coverable.  

v 

Y 
Fig. 8. 

Proof  

Since sl and s3 do not form a cover of  G, G is not  2-coverable.  

LEMMA 12 

Let  G be a 3-coverable CS. Then any two non-side hexagons  o f  G are disjoint. 

Proof  

By contradiction.  I f  G has two non-side hexagons  s '  and s "  with an edge in 
common,  then G has a subgraph as shown in fig. 9. It is easy to check that s~, s2 
and s3 do not form a cover  o f  G. The lemma follows.  
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Fig. 9. 

LEMMA 13 

Let G be a 3-coverable CS. Then G has no such subgraph, as shown 
in fig. 10. 

Fig. 10. 

Proof 

Since Sl, s 2 and s 3 do not form a cover, the graph shown in fig. 10 cannot 
be a subgraph of  any 3-coverable CS. 

LEMMA 14 

Let G be a 3-coverable CS, s be a non-side hexagon of  G. Then the 
vertices on the perimeter of the crown containing s as its centre are all on the 
perimeter of  G. 

Proof 

The lemma follows from the fact that there is no hexagon on the positions, 
each of which has a star (see fig. 11) (lemma 13). 

(Fig. 11). 
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LEMMA 15 

Let G be a 3-coverable CS. Then G contains no such side hexagon that has 
exactly one pair of  parallel edges on the perimeter of  G (see fig. 12). 

ez 

Fig. 12. 

Proo f  

If the lemma is false, we can find a side hexagon s of  G with exactly two 
parallel edges el and e2 on the perimeter of  G (see fig. 12). Then hexagons st,  st ,  
s ;  and s~. belong to G. Without loss of  generality, we may assume that s is uppermost 
in the sense that s '  is not a hexagon having the same property as s, or s '  does not 
belong to G. By lemma 13, neither Sl nor s2 belongs to G. By lemma 11, none of  
s3 and s4 belongs to G. Hence, s '  must belong to G (otherwise el and e2 are fixed 
single bonds of  G, a contradiction). Since s~' and s~ form a cover of  G, at least one 
of  s5 and s6 belongs to G. Again by lemma 11, if  one of  ss and s6 belongs to G, 
the other must belong to G too. This means that s '  is a side hexagon with exactly 
two parallel edges on the perimeter of  G, which is contrary to the selection of  s. 
The proof  is thus completed. 

THEOREM 16 

Let G be a normal k(>3)-coverable  CS. Then G has chords of  type II: 
el . . . . .  e,,,. Each section G(e i, ei + 1) is either a Tn with attachable edges e; and ei+ 1, 
or a crown, or a hexagon, where ei and e i + 1 constitute an attachable combination. 

Proo f  

Let G be a k(->3)-coverable CS, s be any hexagon of  G. We want to prove 
that s is contained in a section of  G which is a Tn, or a crown, or a hexagon. 

Case 1. None of  the vertices of  s lies on the perimeter of  G, i.e. s is a non- 
side hexagon of  G. By lemma 14, all the vertices of  the crown containing s as its 
centre hexagon are on the perimeter of  G. This implies that there are two chords 
of  type II, say ei and el + 1, on the perimeter of  the crown, and G(e i, ei + 1) is a crown. 
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We claim ei and ei+l constitute an attachable combination. Let ei = el (cf. fig. 7). 
Then ei+l cannot be eT, j =  1, 2, 3. Otherwise, we can find three hexagons of  G: 
the centre hexagon of  the crown, the two hexagons of  G containing the edges ei and 
ei + 1, respectively, which do not belong to the crown. It is not difficult to check that 
these three hexagons do not form a cover of  G, contradicting that G is 3-coverable. 

Case 2. Hexagon s has exactly two vertices on the perimeter of  G. Then G 
has a subgraph which is a T3 (see fig. 13). Let T, be the maximal subgraph of G 
containing s in the sense that there is no T,+I which is a subgraph of  G and 
contains s. By lemma 13, it is clear that there is no hexagon of  G on the positions, 

_.(' 

J 

Fig. 13. 

each of  which has a star. By lemma 14, there is no hexagon on the positions, each 
of which has a double-star. There is no hexagon on position 1 (lemma 11). Again 
by lemma 11, if there is a hexagon on position 2, there must be a hexagon on 
position 3. Then we find a Tn+l containing s, contradicting the maximality of  Tn. 
Therefore, there is no hexagon of G on position 2. This implies that el is either a 
chord of  G or an edge on the perimeter of  G. Analogously, edge e2 is either a chord 
of G or an edge on the perimeter of  G. Since G is a normal CS, both el and e2 are 
chords of  type II. Clearly, the section G(el, e2) is a T~ and el and e2 are attachable 
edges of  Tn. 

Case 3. Hexagon s has exactly three vertices on the perimeter of  G. By 
lemma 11, this is impossible. 

Case 4. Hexagon s has exactly four vertices on the perimeter of  G. By lemma 
15, these four vertices carmot be contained in two parallel edges of s. Hence, s has 
three consecutive edges or two non-parallel, non-incident edges on the perimeter 
of  G. 

Subcase 4.1. Hexagon s has three consecutive edges on the perimeter of  G 
(see fig. 14). It is clear that in the case when s2 does not belong to G, neither s4 
nor s5 belongs to G (lemmas 11 and 15). Similarly, if sl does not belong to G, 
neither of  s6 and s7 belongs to G. Hence, if  neither of  Sl and s2 belongs to G, e is 
a chord of  type I, which is contrary to the fact that G is normal. Therefore, at least 
one of  sl and sz must belong to G. Suppose that sl belongs to G. Then by lemma 
11, one or both of  s2 and s3 must belong to G. Thus, the hexagon s* is one with 
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Fig. 14. 

exactly two vertices on the perimeter of  G, or is a non-side hexagon of  G. It will 
be reduced to case 1 or case 2. Therefore, s* is contained in a section of  G which 
is a crown or a In. Consequently, s is contained in a crown or a T,, which is a section 
of  G. 

Subcase 4.2. Hexagon s has two non-parallel and non-incident edges on the 
perimeter of  G (see fig. 15). By lemma 13, there is no hexagon of  G on the 
positions, each of  which has a star, By lemma 11, no hexagon of  G appears on the 
position, each of  which has a double star. If on one of  the positions 1 and 2 there 

3 

Fig. 15. 

is a hexagon of  G, s' or s" will be a hexagon with three consecutive edges on the 
perimeter of  G, and it can be reduced to subcase 4.1. Otherwise, there is a hexagon 
on position 3, and ei and el÷ ! are chords of  type II, and the section G(ei, el+ 1) is 
aT2.  

Case 5. Hexagon s has five vertices on the perimeter of  G. If on the position 
with a star (see fig. 16) there is no hexagon of  G, then G has no hexagon on each 
of  the positions labelled by 1, 2, 3 and 4 (lemmas 11 and 15). Thus, G is a BS with 

Fig. 16. 
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three hexagons, a contradiction. Therefore, there must be a hexagon on the position 
with a star, and s* is a hexagon of  G with at most four vertices on the perimeter 
of  G. Consequently, it can be reduced to one of  the above cases. 

Case 6. Hexagon s has six vertices on the perimeter of  G. Since G is a normal 
CS, s has exactly chords of  type II. It is not difficult to verify that these two chords 
constitute an attachable combination of  s. 

Let T,- and T,,-- denote the subgraph of Tn obtained from T, by deleting one 
and two attachable edges of  T,,, respectively (see fig. 17). 

r,- 

We have the following: 

Fig. 17. 

e,* 
7,-- 

LEMMA 17 

T~- and T,-- are k(>3)-coverable.  

Proof  

Let K = {sl . . . . .  sk} be a set of  k(>3) pairwise disjoint hexagons of Tn, 
where si ¢: s{, sl '~ s(z for i = 1 . . . . .  k (see fig. 17). Let M be a perfect matching of  
T,, - K. To prove that K is a cover of Tn--, it suffices to prove that both el and e2 
are M-double bonds. If one of the hexagons s~, s~. and s] belongs to K, then el is 
an M-double bond. If none of  them belong to K, then it is not difficult to see that 
edge e~ is an M-double bond, while edges e~ and e] are M-single bonds. Without 
loss of  generality, we may assume that M is a perfect matching of  Tn - K in which 
el is an M-double bond. By an analogous reasoning, e2 is an M-double bond. Hence, 
K is also a cover of  Tn--. By the arbitrariness of  K, T,-- is k(>)-coverable. 

We can prove that Tn- is k(>3)-coverable in a similar way. 

THEOREM 18 

Let G be a normal CS with chords of  type II: e~ . . . . .  et such that each section 
G(ei, ei+ 1) is a T,, with attachable edges ei and el+ 1, or a crown, or a hexagon, 
where el and ei+l constitute an attachable combination. Then G is k(>3)-  
coverable. 
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Proo f  

Let K =  {sl . . . . .  sk} be a set of  k(>3)  pairwise disjoint hexagons of  G, 
Ki = K n G(ei,  el+ 1), i = 1 . . . . .  t. We divide G into t separate parts according to 
the following regulations: (1) Each chord belongs to exactly one part. (2) If the 
hexagon of  G(ei, ei ÷ 1) containing chord ei (or ei + 1) belongs to Ki, then ei (or ei + 1) 
must belong to the ith part. (3) If chord ei does not belong to any hexagon of  K, 
then ei belongs to the ith part. It is clear that each part is a Tn, or a T,,-, 
or a Tn--, or one of the graphs depicted in fig. 18. All these are k(>3)-coverable  
(theorem 4 and lemma 17). Hence, K i is a cover of  the ith part. Consequently, K 
is a cover of  G, and G is thus k(>3)-coverable.  

Fig. 18. 

THEOREM 19 

A normal CS G is k(>3)-coverable if and only if G has chords of  type II: 
el . . . . .  et and each section G(ei, el+ 1) is a T,, with attachable edges ei and ei + 1, 
or a crown, or a hexagon where e i and el+ 1 constitute an attachable combination. 

Proo f  

Immediate from theorems 16 and 18. 

If G is not a normal CS, then G has some chords of  type I. Let e~ . . . . .  e~, 
be the maximal chords of type I. Then G" = BS(e~) n BS(e~) n . . .  n BS(e~,) is a 
normal CS, as we mentioned before. 

THEOREM 20 

Let G be a CS with chords of  type I, el . . . . .  e;n be the maximal chords of  
type I. Then G is k(>3)-coverable if  and only if BS(e~) (i = 1 . . . . .  m) is a k(>3)-  
coverable BS and G" is a normal k(_>3)-coverable CS. 

Proo f  

Suppose that G is k(>3)-coverable.  Let K =  {sl . . . . .  sk} be a set of  k 
pairwise disjoint hexagons of  BS(e~), where e[ is a maximal chord of  type I, 
i = 1 . . . . .  m. Since G is k(>3)-coverable,  G -  K has a perfect matching, say M. 
Denote the hexagon of  CS(e[) containing the chord e" by s*. Since s* itself is a cover 
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of  G, BS(e~) has perfect matchings. Hence, BS(e~) has an even number of vertices. 
This implies that if  e~ is not an M-double bond, then the two end vertices of  e~ are 
saturated by M-double bonds which are simultaneously in CS(e~) or BS(e~). Therefore, 
BS(e~) - K  has a perfect matching: BS(e~) n M if e~ is in M or the two M-double 
bonds saturating the end vertices of e~ are in BS(e~); or BS(e~) n M u {e~ } if the 
two M-double bonds saturating the end vertices of  e '  are in CS(e~). Consequently, 
K is a cover of  BS(e~) and thus BS(e~) is k(>3)-coverable.  Similarly, we can prove 
that G '  is k(>3)-coverable.  

Conversely, suppose that G '  and BS(e~) (i = 1 . . . . .  m) are k(> 3)-coverable. 
By theorem 16, it is not difficult to see that e~ must be a member  of  an attachable 
combination of  a crown or a hexagon (cf. fig. 6). Now we can prove that G is 
k(> 3)-coverable in a similar way as in the proof of  theorem 18. We omit the details. 

4. General remark 

A multi-CS is a CS with more than one hole. By the above results, the 
constructive feature of  k(>3)-coverable multi-CSs is already clear. We do not 
discuss the details here. 
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